Conclusion¶
Congratulations! You did it!
In this first part, you were able to run a simple ML experiment with Jupyter Notebook, adapt and move the Jupyter Notebook to Python scripts, and initialize Git and DVC for local training.
The following diagram illustrates the bricks you set up at the end of this part.
flowchart TB
dot_dvc[(.dvc)]
dot_git[(.git)]
data[data/raw] <-.-> dot_dvc
workspaceGraph <-....-> dot_git
subgraph cacheGraph[CACHE]
dot_dvc
dot_git
end
subgraph workspaceGraph[WORKSPACE]
prepare[prepare.py] <-.-> dot_dvc
train[train.py] <-.-> dot_dvc
evaluate[evaluate.py] <-.-> dot_dvc
data --> prepare
subgraph dvcGraph["dvc.yaml (dvc repro)"]
prepare --> train
train --> evaluate
end
params[params.yaml] -.- prepare
params -.- train
params <-.-> dot_dvc
end